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Eigensensitivity-Based Optimal Damper Location
in Variable Geometry Trusses
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In this paper, two procedures are described to identify the optimal damping element locations in variable geometry
trusses and to improve their behavior when dynamic loads are applied. In simple structures subjected to well-
identified actions, obtaining an optimal location for damping elements can be relatively easy. However, as the
geometry of the structures becomes more complex, the number of elements increases, and the frequency range of
external actions is wider, finding the optimal location of dampers along the system becomes a difficult task.
Furthermore, if the structure varies its geometry in successive positions, such as folding, unfolding, or any other
movement, another level of complexity is added to the problem. The two procedures presented in this paper are based
on calculating the effectiveness indices obtained from the derivatives of the eigenfrequencies of the dynamic
eigenproblem with regard to parameters like stiffness or damping.

Nomenclature

a;; = modified effectiveness index of bar j for vibration mode
i

a;; = effectiveness index of bar j for vibration mode i

b = index indicating the number of bars or possible
locations of dampers

b;; = modified effectiveness index of bar j for complex

~ vibration mode i

;j = effectiveness index of bar j for complex vibration mode

i

[C] = damping matrix

cj = damping coefficient of bar j

)4 = index indicating the position or geometrical
configuration of the variable geometry truss

[K] = stiffness matrix

k; = stiffness coefficient of bar j

[M] = mass matrix

m = amount of vibration modes

W, = weight factor for position p

w; = weight factor for mode i

«;; = normalized global effectiveness index of bar j for
vibration mode i

a; = normalized global effectiveness index of bar j

A = eigenvalue i of the nondamped dynamic eigenproblem.

{p}; = -eigenvector i of the nondamped dynamic eigenproblem.

{¥}; = eigenvector i of the damped dynamic eigenproblem.

Q; = square root of eigenvalue i of the damped dynamic

eigenproblem.
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; = square root of eigenvalue i of the nondamped dynamic
eigenproblem.
I. Introduction

N RECENT decades, many researchers have been working to

improve the dynamic behavior of structures, especially in the field
of flexible space structures. Some of the results obtained for space
structures have also been extrapolated to building structures
subjected to seismic actions and slender structures subjected to forces
caused by the wind. One way to control or reduce vibrations consists
of optimally redesigning the structure geometry; in this regard, it
is worth mentioning the works of Keane et al. [1-3] in which
evolutionary optimization algorithms are employed to define
structural geometries presenting better dynamic behavior in given
frequency ranges. However, obtaining an optimal geometric design
is not usually enough to ensure good dynamic behavior in structures.
For example, the structures used in aerospace applications are, in
general, very flexible and usually have small structural damping,
whereas the geometric accuracy required is very high. Therefore, it is
necessary to include damping elements (or even actuators), which
can be passive, active, or semi-active. In the case of building
structures subjected to dynamic actions, if slender elements are
required, damping elements are also installed. Whether in the case of
aerospace structures or building structures, an interesting problem is
choosing the optimum locations of the damping elements. As
possible damper location combinations are discrete, a combinatory
optimization problem must be solved. In the following paragraphs,
some alternatives for solving this problem are described briefly.

A first approach to obtaining the optimal combination of locating
damper elements is established by the use of ad hoc iterative
methods. Skelton and DeLorenzo [4] suggested starting by locating
actuators in all possible locations and, afterward, eliminating the
least effective one by one. Likewise, Haftka and Adelman [3]
proposed another ad hoc iterative method to obtain quasioptimal
solutions, in which only one actuator’s location is changed in each
iteration. These methods have a low computational cost but usually
lead to nonoptimal designs.

A second approach to the problem consists of approximating the
discrete optimization domain with a continuous domain. Once the
optimization problem has been solved for the continuous domain, the
damping elements are located in the discrete positions that best fit the
continuous domain solution. Burdisso and Haftka [6] used this
procedure to obtain the optimal locations of actuators in a space
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structure holding an antenna, and Maghami and Joshi [7] also used it
to locate actuators along a beam-shaped space truss. The loss of
accuracy due to the use of a continuous domain instead of a discrete
domain may be admissible. Nevertheless, the methodologies used in
continuous optimization do not present significant computational
advantages when compared with discrete optimization techniques.

A third approach is based on the use of effectiveness indices to
quantify the fitness of the different locations of the actuators or
dampers. In this way, Preumont et al. [8] suggested identifying the
elements of a spatial truss structure that might be replaced by
piezoelectric actuators used as active dampers and employing the
modal elastic strain energy fraction of a given bar of the truss as the
effectiveness index.

For effectiveness in a given modal range, the effectiveness index
of each bar (each suitable location) is calculated as the weighted sum
of the fractions of the elastic strain energy for each mode taken into
account. This methodology assumes that the piezoelectric actuator
replacing a bar would have approximately the same stiffness. This
approach is also useful as a previous step to the more accurate
combinatory optimization, to shortlist a subset of suitable location
combinations and, therefore, to reduce the size of the problem. In this
area, it is worthwhile mentioning the work done by Lammering et al.
[9]; the optimization algorithm for the optimal PZT actuator
placements uses the electric potentials to minimize the control effort.

A fourth approach is to solve the problem of combinatory
optimization directly. It is the most accurate; however, it is also the
most expensive. In this fourth approach, various alternative
techniques can be used to solve the problem: integer linear
programming methods, simulated annealing, and evolutionary
methods such as genetic algorithms. For example, Ponslet et al. [10]
and Padula and Sandridge [11] faced the optimal actuator location
problem via integer linear programming. The aim of these works is to
increase the damping in a given modal range. From a physical point
of view, this method is analogous to the method of effectiveness
indeces established by Preumont et al. [8]; however, there is a
difference in the mathematical solving procedure. This method is
very intuitive for an engineer, though it sometimes presents low
numerical effectiveness when the modal range to be taken into
account is high or when the effect of each actuator in the total
damping is high and considering the effects of many actuators as an
additive is impossible.

The methods established based on simulated annealing or genetic
algorithms are the most accurate but are also computationally
expensive. The method of simulated annealing (introduced by
Metropolis et al. [12]) may be considered an improvement over the
aforementioned iterative methods [4,5]. Chen et al. [13,14] applied
the method of simulated annealing to the search for optimal locations
of passive and active actuators. They proposed a procedure in which
a location occupied by an actuator is both selected randomly and
randomly changed to a different location unoccupied by any other
actuator. The objective function arranged for the optimization
process is the total summation of the energy dissipated by the passive
and active actuators for a finite time interval, this interval being
approximately 3 times the period of the first eigenfrequency.

Lastly, the evolutionary methods and, especially, genetic
algorithms (pioneered by Holland [15]) are currently the more
extended heuristic methods used to solve the problem of optimally
locating actuators in structures. The genetic algorithm method is
more recent than simulated annealing and is more effective in the
field of solution improvement. As such, some of the first works about
the use of genetic algorithms in the field of determining damper and
actuator optimal location in space structures are outlined. Rao et al.
[16] used a genetic algorithm to search for the optimal locations of
three active actuators along a ten-bar space structure taken as an
example. To do this, they used a binary codification in such a way
that a zero value implies a location without an actuator and a one
value implies a location with an actuator, that is, each chromosome is
a binary chain with three one values and seven zero values. Onoda
and Hanawa [17] described a simulated annealing methodology,
including some features typically belonging to a genetic algorithm,
and applied it to the selection of actuator optimal locations in space

structures with more than 200 bars. It is also interesting to point out
the work of Dhingra and Lee [18], in which a genetic algorithm is
used, hybridized with steepest descent optimization techniques. The
genetic algorithm generates some populations for a given progeny
number and, in a final step, the steepest descent optimization
techniques are applied, taking as a starting point the solution given by
the last genetic algorithm iteration. The fitness function arranged as
the optimal location criteria is the amount of energy dissipated by the
actuator during a predefined time interval.

In 1995, Furuya and Haftka [19] proposed searching for optimal
locations via some kind of effectiveness indeces, as Preumont et al.
[8] did, but using them as a fitness function for the genetic algorithm.
The advantage of employing effectiveness indices as fitness
functions instead of calculating the dissipated energy integral by
actuators is the speed with which they are computed. This is
especially advantageous in the case of genetic algorithms due to the
great number of iterations required. As a disadvantage, the
effectiveness indices present the limitation of being less accurate
than the calculation of the integral of the dissipated energy.

Recently, the use of genetic algorithms to search for optimal
damper locations has also been extended to building structures to
improve their behavior against seismic or wind loads, as mentioned
in [20-24]. When dealing with space structures, the search for
optimal actuator locations is still a research area in and of itself. A
large amount of work in this field is centered on the use of genetic
algorithms, developing new fitness functions for specific objectives
defined in each case, and/or advances in the efficiency of genetic
algorithms themselves, as indicated, for example, in [25].

In the following sections, two new methods are presented to search
for the optimal damper locations following a system analogous to the
one used by Preumont et al. [8] but with an appreciably different
theoretical approach. Specifically, the development presented in this
work is established on a technique based on the calculation of real
eigenvalue derivatives, as in Fox and Kapoor [26], and complex
eigenvalue derivatives, as in Adhikari [27], known as an
“eigensensitivity analysis.” An effectiveness index approach has
been chosen due to computational saving advantages; therefore, it is
considered the most appropriate for application to variable geometry
trusses (VGTs), for which an optimal location is to be obtained not
only for a unique geometrical configuration but also for a series of
different geometries given by a set of successive positions. In the
same way, the authors propose hybridizing this methodology with
genetic algorithms in the future. In Fig. 1, a prototype of a variable
geometry truss developed by the authors is shown.

Application examples are presented and discussed after the
theoretical explanation of each of the two approaches. In addition,
these examples are used to go more deeply into some important
features of the method.

II. Optimal Damper Positioning
Using Real Eigensensitivity

An intuitive way to detect the optimal location of a damper
(situated parallel to a bar of the structure) to be effective is to
determine how a change in the stiffness of that bar affects the natural
frequencies of the structure. In fact, if a given bar is accompanied by a
damper, the result is in some way equivalent to introducing an
additional force between the nodes of that bar. If the stiffness of the
bar is increased, the result is also equivalent to introducing an
additional force between the nodes of the bar. In the case of
increasing the stiffness, the force is proportional to the difference of
the nodal displacements in the direction of the bar, whereas by adding
a damper the force is proportional to the difference of the nodal
velocities. In other words, the highest changes in natural frequencies
are obtained by increasing the stiffness of the bars with high strain
energy, which would also dissipate high damping energy.

According to the preceding paragraph, one can postulate that the
effectiveness of locating a damper in a given position can be
measured as the influence that the increase in the stiffness of a bar,
located in parallel with the damper, would have on the natural
frequencies. This method is also valid when a damper is wanted



578 BILBAO ET AL.

Actuator

Rigid bar

Damper

a) Prototype of VGT.
MBAD work team

b) General diagram of a VGT

Fig. 1 Variable geometry trusses (where MBAD refers to multibody
analysis and design).

between nodes not joined with a bar; in this case, the initial stiffness
would be zero.

To determine the sensitivity of a natural frequency to the variation
in bar stiffness, the derivative of that natural frequency must be
calculated in relation to its stiffness coefficient. For each natural
vibration mode of interest, the corresponding natural frequency
derivatives must be calculated in relation to the stiffness coefficients
of each bar in the structure. Optimal locations to place a damper will
be given by those for which these derivatives are the highest. In this
way, some effectiveness indices are defined for each location and
selected vibration mode. Let w; be the natural frequency of mode 7,
within the modal range of vibrations requiring attenuation, and k; the
stiffness coefficient of bar j of the structure; the effectiveness index
a;; for mode i in the location given by j would be defined as

_ dw;
=t 1
a 1 a kj ( )
To simplify calculation of the expression of the derivatives, we
propose the squared natural frequency derivative be taken instead of
that given by Eq. (1), that is, the eigenvalue derivative A; of the
nondamped dynamic eigenproblem with respect to bar stiffness j.
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To determine the derivative of Eq. (2), the expression developed
by Fox and Kapoor [26] is applied, based on previously obtaining the
characteristic equation derivative of eigenvalues and eigenvectors:

_0A; J[K] M|
a;; = B_k] ={p}] |:a—kj — A E)—kj] {o}i 3)

where {¢}; is the natural mode i, and [K] and [M] are the stiffness and
mass matrices of the structure, respectively. As the mass matrix does
not depend on the stiffness of the bars,

o _, 4

7

and, therefore,

_ 0A; _ [ 0K]
a;j = 3_k] = {¢}; |:3—kji| {o}i (®)

The stiffness matrix of a structure can be expressed as the
following summation:

b

(K] =) k2] (6)

e=1

where b is the total amount of bars in the structure and [g,] is the
element geometric matrix for bar e, expanded to the total amount of
degrees of freedom in the system, as described in the works of Avilés
et al. [28,29]. Therefore, the stiffness matrix derivative can be
formulated as follows:

K] _ 3 (N, s ) ke Jg]
akj _a_kj(;ke[ge]) _e=la—kj[ge]+ke Bkj (7)

The geometric matrix depends on geometric parameters only (as
deduced from its name); if the VGT is formed only by bars articulated
via spherical pairs, these parameters are only the angles that fix the
bar location. Therefore, the derivative takes the following value:

MKl
a—kj - ;Sej[ge] + ke -0 (8)

where §,; is null if e # j and unity if e = j, that is,

oKl

o, [g;] )
Therefore, the effectiveness indices can be calculated from the
following expression:

o, _
ajj = a—kj = o} 8 }e}i (10)

III. Examples of Damper Positioning
Using Real Eigensensitivity

The examples developed in this paper correspond to the six-
module variable geometry truss shown in Fig. 2. The bars of the
structure, whose limit nodes are detailed in Table 1, are joined via
spherical joints. The lengths of the bars range from 0.6 to 1.5 m, their
section areais 1.2 x 10™* m?, and the material is steel, with a density
of 7.8 x 10° kg/m? and a Young modulus of 2.1 x 10'! Pa. The
displacements of the three nodes at the base are constrained. It has
been assumed that the mass of all the bars is the same regardless of
length to avoid problems with active bars (high displacement
actuators). The assumed mass value is 0.936 kg (corresponding to a
1.0 m length). The stiffness of the bars has also been taken regardless
of bar length and its value is 2.52 x 107 N/m. In Fig. 3, the shape of
the lowest four modes is shown for the VGT in Fig. 2.

This structure with 57 bars is complex enough to justify an
alternative method to that given by a full search method. If one could
know how many different combinations would be necessary to
evaluate the location of four dampers (considering them parallel to

existing bars), (547) = 39.395.010 evaluations would have to be

made.

A. Example 1

Effectiveness indices are calculated for each bar in the structure
according to Eq. (10) and for the lowest four natural modes. These
indices are normalized to be uniformly represented via scaling with
respect to the maximum per mode:

O =aij/Ai (11)

where
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Fig. 2 Six-module VGT used in the examples.
Ay =max{a;, ap, ..., 0 ..., Ay} (12)

The results of the effectiveness indices appear in Fig. 4. In this
figure, the locations with the four highest effectiveness indices
appear drawn with thick stroke; these locations would be the best for
damping elements to improve the dynamic behavior of the structure
against vibrations exciting the lowest four vibration modes.

When comparing the locations with greater effectiveness indices
with the shape of the vibration modes, it is especially significant that
for the first mode (geometrically equivalent to the first flexural mode
in a cantilever beam) the positions of highest effectiveness are all
located at the structure base, whereas for the fourth mode
(geometrically equivalent to the second flexural mode in a cantilever
beam) some high indexed locations appear in the middle of the
structure, in a zone in which the corresponding mode has an
inflection point. Analogous reasoning has also been considered in a
recent paper by Gao [30].

To take into account many vibration modes, first the effectiveness
indices corresponding to each mode must be normalized using the
expressions given in Eqgs. (11) and (12) and, afterward, a global
effectiveness index must be calculated for each location as the
summation of the normalized effectiveness indices of each vibration

mode. From these normalized effectiveness indices, a global index,
@, is calculated for each location to cover the modal range required.
For example, if damper placing is considered to attenuate a vibration
that excites the vibration modes ranging from 1 to m, the expression
to be used is

o= Z@= Z%’ (3)

i=1 "7t i=1

B. Example 2

For the same structure used in the previous example, Fig. 5 shows
the results of the global effectiveness indices calculated for the
lowest four natural modes according to Eq. (13). In the same figure,
the four optimal locations to control vibrations exciting the lowest
four vibration modes are shown with a thick stroke.

In addition, if there are some vibration modes for which
attenuation is more interesting than for others, a weighting operation
can be performed. For example, Furuya and Haftka [19] analyzed
weighting strategies in which more importance is given to the first or
lowest mode as compared with the highest. However, weighting
factors can be established dealing with other priorities, for example,
vibrations provoking displacements in the structure when high
positioning precision is required or positions near an obstacle to
avoid collisions. Let w; be the weighting factor corresponding to
vibration mode i; the global weighted effectiveness indices can be
calculated as the summation given by Eq. (14):

oq:Zw,-@:Zw,aij 14)

i=1 t i=1

C. Example 3

In this example, the same global effectiveness index calculation is
performed as in example 2, but the contribution of each mode is
weighted with different values. In this case, the weighting factors
have been chosen as 1, 1, 3, and 2 for modes 1, 2, 3, and 4,
respectively, that is, more importance has been given to mode 3 and
then to mode 4, and less importance to modes 1 and 2. Figure 6 shows
the results. One can observe that the graph of effectiveness indices
has been modified with respect to the graph shown in Fig. 5.

The weighted global effectiveness indices calculated with Eq. (14)
are valid for one position in the structure, that is, for only one
geometrical configuration. To apply this methodology to variable
geometry trusses, the expressions for the effectiveness indices must
be generalized; therefore, successive positions reached by the VGT
must be considered. Therefore, in general, the weighting must be

Table 1 Bar list for VGT in Fig. 2

Bar ID Node 1 Node 2 Bar ID Node 1 Node 2 Bar ID Node 1 Node 2
1 2 4 20 7 12 39 15 17
2 2 6 21 9 11 40 15 18
3 1 4 22 9 12 41 14 16
4 1 5 23 8 10 42 14 17
5 3 6 24 8 11 43 16 19
6 3 5 25 10 13 44 18 19
7 4 8 26 12 13 45 16 20
8 5 8 27 10 14 46 17 20
9 6 9 28 11 14 47 17 21
10 5 9 29 11 15 48 18 21
11 6 7 30 12 15 49 16 17
12 4 7 31 10 11 50 17 18
13 4 6 32 11 12 51 18 16
14 6 5 33 12 10 52 19 20
15 5 4 34 13 14 53 20 21
16 7 8 35 14 15 54 21 19
17 8 9 36 15 13 55 19 22
18 9 7 37 13 16 56 22 21
19 7 10 38 13 18 57 22 20
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¢) Mode 3 (56.96 Hz)

d) Mode 4 (67.31Hz)

Fig. 3 Vibration modes of the six-bar VGT.

double; apart from the modal weighting proposed in Eq. (14), a
second weighting needs to be considered, dealing with the successive
structure positions. To do so, first the VGT path must be discretized
in n successive positions to be representative of the entire movement.
For each position p of the structure, the effectiveness index for each
location j is calculated as

W; pQijp (15)
1

m m
_ Lijp _
Qjp= § :wi,p A
ip =

i=1 i

Therefore, the effectiveness index of location j for the modes
ranging from 1 to m and for all the successive positions ranging from
1 to n must be calculated with the double summation of Eq. (16):

n m

o) = Xn: i W p Z\l,j: N Z Z Wi p®ij.p (16)

p=1 i=l p=1 i=1

In the same way, weighting factors can be included to take into
account the different relative importance among positions; it may be
interesting to give more weight to those positions at which greater
accuracy is required. The following expression can be used when
position weighting factors are taken into account:

m

n m L. n
o = Zl w, Z| w; , % = Zl w, Zl Wi (A7)
p= i= i r= =

where W, is the weighting factor for position p. It must be mentioned
that the modal weighting factor for each mode i can be different for
different positions, that is, in general, w; ,; # w; ,,. In this way, itis
possible to attenuate some modes in a position range and some others
in another position range.

Finally, it must be also mentioned that the expression given by
Eq. (17), established to determine the global weighted effectiveness
indices by taking into account different modal and position ranges, is
not entirely correct. The position weighting factors W, might have an
equivalent contribution when building the effectiveness index,
before application of the position weighting factor. To achieve that
equivalence, a second normalization should be performed before W,
is applied, which can be established by defining the normalization
factor B, as in Eq. (18).

m m
_ C Gip| s
Bp_g??z{;w,,p A,-’,,} —jrg?ﬁ{;w,,pau,p} (18)

With this factor, the effectiveness indices can be redefined as in
Eq. (19).
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Damper locations

Effectiveness indices

Fig. 4 Location of four dampers to attenuate the lowest four modes.

As can be observed in Eq. (20), recalculation of the eigenvectors
and geometric matrix is required for each new position. The

19)

is

calculation of the geometric matrix for each position
straightforward, and only the values of the angles defining the

When generalization of successive geometric positions is
required, the main difficulty derives from the calculations of a;; :
p

direction of the bars must be updated in the corresponding
expressions. However, the eigenproblem must be solved again for
each new position to determine new eigenvalues and eigenvectors,
which may be computationally expensive. As an alternative strategy
to minimize computational cost, eigenvector linear estimation is

(20)

o}l lg1, 40},

O
ok,

Qij.p
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a) Global effectiveness indices

b) Damper locations

Fig. 5 Location of four dampers to attenuate the lowest four vibration modes.
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a) Global effectiveness indices
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b) Damper location

Fig. 6 Location of four dampers to attenuate the four lowest modes with weighting factors (1, 1, 3, 2).

proposed for each new position {x} + A{x}, taking the previous
position {x} as a starting point:

a{w}i]r on

ax)

Bl am = @il + [ Afx)

{x

If great geometric variations occur along the structure movement,
the eigenproblem may be solved periodically to ensure the fidelity of
the estimations. In any case, a great amount of computation time
might be saved by not having to solve an eigenproblem per position.
In Fig. 7, a flowchart of the complete, real eigensensitivity-based
methodology to calculate effectiveness indices when successive
positions are taken into account for the VGT is shown.

D. Example 4

In Fig. 9, the damper optimal locations are shown to control the
lowest four vibration modes (without any weighting factor) for the
entire deployment operation of the same VGT used in previous
examples. In Fig. 8, the deployment operation can be observed in six
frames.

IV. Optimal Damper Positioning
Using Complex Eigensensitivity

The methodology developed in the previous section presupposes
that the effect of the damping elements can be estimated from the
nondamped original VGT; therefore, the real eigensensitivity is
assumed to have been applied, that is, not taking into account the
effect of dampers included in the structure modal response. The error
of this approximation is smaller as the number of dampers and
damping rate decrease in the VGT. For example, Padula and
Sandridge [11] and Metropolis et al. [12] rejected the influence of
damping in modal analysis, restricting the number of dampers to

eight. The best way to measure the effectiveness of the dampers is to
calculate the energy they dissipate via numerical time integration;
however, as shown in the works of Chen et al. [14] and Rao etal. [16],
these methods are computationally very expensive. In a VGT, for
which many geometrical configurations must be taken into account,
finding approximate solutions is very important to save computa-
tional time.

In this sense, the methodology developed herein can be
generalized to work with complex modes, increasing the accuracy of
the effectiveness indices; the development shown in this section is
the result of that generalization. The computational cost is slightly
increased yet remains below the cost of direct numeric integration
required by the calculation of the dissipated energy of the dampers.
At the same time, the method developed here allows a sequential
optimal damper location search, that is, adding damping elements
one by one or group by group if required, and supposes an easy
practical alternative to the problem of combinatory optimization.

In the previous section, the question was “Where is the best
location to put adamper?”” And the answer was the location where the
natural frequencies of the nondamped VGT have maximum
sensitivity to the stiffness of the bar located there. The generalization
now considered modifies the answer: the location where the complex
eigenvalues of a damped VGT have maximum sensitivity to the
damping coefficient of a possible damper located there.

Asin Sec. II, to determine the sensitivity of a damped frequency in
a bar, its derivative is calculated with respect to the damping
coefficient of a damper located in parallel. And for each interesting
vibration mode, the derivative of the corresponding damped
frequency must be calculated with respect to the damping coefficient
in each possible location in the structure. The optimal locations of the
dampers are the most eigensensitive locations.

The equation governing the vibrations in a finite element method
model of a damped mechanical system is given by Eq. (22):
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(MBS} + [CHS(0)} + [KI8()} = {0} (22) 0 _
o (29)

where [M] is the mass matrix, [C] is the damping matrix, and [K] is the %NII] =0

stiffness matrix. {§(¢)}, {3 (1)},and {g( t)} are the nodal displacement,
velocity, and acceleration vectors, respectively. Harmonic solutions
to the previous equations exist as

where {y¥/} is a complex eigenvector and s =iQ2 is a complex
eigenvalue. Substituting Eq. (23) in Eq. (22), we obtain

s [M{y} + s[CHy} + [KI{y} = {0} (24)
that is,
(s*[M] + s[C] + [KD{y} = {0} (25)

When the damping matrix is null, these complex eigenvalues
match real natural frequencies:

[Cl=[0]= Q=0 (26)

The effectiveness indices are to be calculated from the derivatives
of the damped frequencies with respect to the damping coefficient c;
of each possible location j (parallel to the bars of the structure).
Adhikari [27] demonstrated that the expression of this derivative is

90, (YT A8 — @2 M 4 i, A ),
— ) J J J 27
de, — T (@M KD @7

The previous expression itself defines the new proposed
effectiveness index of location j for vibration complex mode i:

- 0Q;
AN

(28)

J

In this case, the effectiveness of arranging a damper is measured
parallel to the bar j to attenuate the vibration complex mode i.
Equation (27) can be developed by taking into account that neither
the mass matrix nor the stiffness matrix are damping dependent:

Therefore, Eq. (27) can be simplified as follows:
I

_0%_ o W aQGDW
T 9e, T QMY + KDY

S

(30)

To calculate the previous expression, first the damping matrix
derivative with respect to the damping coefficient c; is required. As
Bilbao et al. [31] demonstrated, if discrete dampers are arranged
parallel to the bars of a VGT, the damping matrix can be expressed as
a function of the expanded element geometric matrices:

b

[€1=> clz.l 31)

e

where b is the total amount of possible locations. Therefore,

Cl g oo
T, = 2 Sl + 0 (32)

where §,; is null if e 7 j and unity if e = j, that s,
acy -
B, [g;] (33)

One can observe that the derivative in Eq. (33) matches the
derivative in Eq. (9). Therefore, the effectiveness indices b;; can be
calculated as

o (T Q41g,D (v

b= CaT M) + KD 9, G4
This leads to

P o TN -

T QM) + (KDY
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When applying these effectiveness indices to the search for the
optimal damper location, first the nondamped situation must be
chosen as the starting point. For this initial situation, the frequencies
and e modes will be real:

{w}i,o = {(p}z
Q= o (36)
Therefore,
TI5. )
b_ij4o — la),z R {gl;}l [gj]{(p}t (37)
10} (wi[M] + [K]){e};
Developing the denominator of the previous equation,
TIo. )
b_ij,a — l'wZ {¢}t [g]]{(p}r (38)

" woH{e} [ IMI}; + o} [Kl{e)i

If normalized modes are used with respect to the mass matrix, the
following expressions apply:

@} MY g}, = 1 %
WK}, = o } <
Substituting in Eq. (38),
- SR
bij,= ?ij? (40)
and, simplifying,
bijo = ix{e} 8 ek @1
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To understand the expression of the effectiveness index b, et
convenient to realize the meaning of the real and imaginary parts of a
complex eigenvalue in a damped dynamic system. Let 2; be

expressed as
Q; =Re(R;) + iIm(;) 42)

where Re(€2;) and Im(f2;) are the real and imaginary parts of a
complex eigenvalue. In accordance with Eq. (23),

s = i(Re(R,) + iIm(,)) 43)
that is,
s = —Im(Q;) + iRe(R) 44)
Returning to Eq. (23),
{8(n)} = {yjeMm@reRe@or 45)

The real part of 2; is the damped vibration frequency, and the
imaginary part corresponds to the exponent of the logarithmic
decrement of the vibration amplitude. Therefore, when the 2;
complex eigenvalue is analyzed, the most interesting part to define
the effectiveness indices is the imaginary part because the aim is to
study the possibility of reducing the vibration amplitude and, more
precisely, the sensitivity of this amplitude to the allocation of
dampers in different locations. In the case of Eq. (41), the expression
of the derivative of €2; in the initial situation without dampers only
has an imaginary part. For simplicity, the effectiveness index is
redefined as

bij, = {0} (3o} (46)

where

| Optimal location of N dampers to attenuate mode i

7]

{(f’}i

byjq-1= by

=a; =10/ [},

j=1, b (for all the
locations/bars)

y

b

ilo

|b.

ilg,q-1 =

=ay, Zmax{ail;'“aij;“';aib }|

1,: location for
the first damper

A 4

—» + refresh matrix [C]q

Refresh structure with a new damper in location Z,:

+ calculate new complex frequencies and modes: Qi,q {‘//}i,q

b Im| iQ?

{W}t?:q—l [§ j ]{l//}i,q—l
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U W
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Fig. 10 Optimal locations of N dampers to attenuate the mode i via complex indices.
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(48)

a;

bij,n

47

-1
i3bij.

= 3e =

ij,o

It is shown that the real eigensensitivity with respect to the

stiffness of the bars and the complex eigensensitivity in relation to the

The first conclusion of this development is that, according to

Eg. (10), the effectiveness index b;; , in the initial situation without

damping coefficients of the possible dampers parallel to the previous

bars are identical when a nondamped structure is used as the starting

point.

any damper in the VGT is identical to the real effectiveness index

defined in Sec II:

1,3,5,6,19,23,26,28

Iteration 4

Damper locations

Complex effectiveness indices

Fig. 11 Successive location of dampers to attenuate the fourth vibration mode.
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Fig. 12 Successive location of damping elements for the four lowest vibration modes.

Until now, the development of new effectiveness indices has not
provided any additional information with respect to those developed
in Sec. II, except for the ratification achieved via a different analysis.
However, this new development allows the consideration of the
perturbation effect caused by the dampers over vibration modes,
without having to resort to a simplified analysis neglecting the
difference between the damped and real modes.

This proposed general methodology involves the allocation of
dampers one by one, or group by group, recalculating the
effectiveness indices when a new damper or group of dampers is
located. In this way, when dampers are added one by one, the first
damper will be placed where b;; , = a;; is maximum, that is, where
the real effectiveness index of the original nondamped structure is
maximum. It has to be taken into account that, with this approach, the
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full structure has been considered; therefore, a global optimum
location is achieved. Then, the b;;, effectiveness index will be
calculated for the structure with one damper as calculated in the
previous step to locate the second one. For the third damper, the b;; ,
effectiveness index will be calculated for the structure that already
has two dampers, and so on. For N dampers to be included, N
iterations will have to be solved.
Rewriting Eq. (35) in a general form for the gth iteration,

5 W81

=iQ?
1 (ng.q—l [M] + [KD{Y} g1

M,

(49)

ij,q=1

where b;; ,_; is a complex number. The imaginary part is the most
interesting one, as shown in Eq. (45). Actually, what is being
considered is the modal damping derivative with respect to the
damping coefficients. Thus, the following expression can be used as
the effectiveness index of location j for vibration complex mode i:

) (50)

. W8
N 0?2 q-115] q
Prig-r =1m ( T (@2, M) + KD Wy
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The flowchart in Fig. 10 shows the methodology to search for the
optimal locations of N dampers to attenuate the complex vibration
mode i. When the structure was initially damped, the first b;; ; should
be avoided and the process should start with b;; ;.

V. Examples of Damper Positioning
Using Complex Eigensensitivity

The VGT of Fig. 2 is considered in this section, as in the examples
developed in Sec. III. In the following paragraphs, a set of examples
are shown using the derivatives of the complex eigenvalues as
effectiveness indices.

A. Example 1

It is supposed that vibrations exciting the fourth mode are to be
attenuated. Using complex effectiveness indices, discrete dampers
with a damping coefficient of 1.0 x 10* N-s/m are to be placed
along the structure. Because of physical limitations, only one damper
isto be arranged in each location. In Fig. 11, four iterations are shown
and, in each iteration, a set of two dampers is located.

In the first iteration, locations 5 and 6 correspond to maximum
effectiveness index values; therefore, two dampers are located there.
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Fig. 13 Free vibrations with four dampers located via the random intelligent method (1, 2, 3, 4).
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Fig. 14 Free vibrations with four dampers located via real eigensensitivity (2, 4, 5, 6).
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In the second iteration, locations 1 and 3 show the highest
eigensensitivity once the previous dampers are included in the VGT.
One can state that the system is now “balanced” in terms of damper
placement.

Before the third iteration, dampers in locations 1, 3, 5, and 6 have
been placed; afterward, when complex eigenvalue derivatives are
recalculated, locations 5 and 6 correspond again to the highest
values. As stated at the beginning of the example, only one damper is
allowed in each location; thus, locations 19 and 23 have been chosen
because they are the next locations where effectiveness values are the
highest. In the fourth and last iteration, the new eigensensitivities are
calculated with the VGT with dampers in locations 1, 3, 5, 6, 19, and
23. The locations with higher eigensensitivity are again numbers 1
and 3. As these locations are already occupied by dampers, the next
possible locations are numbers 26 and 28.

B. Example 2

The same example is analyzed, but now the attenuation of the four
lowest modes is considered instead of only the fourth mode. In this
case, discrete dampers are also placed in sets of two with a damping
constant ¢ with a value of 1.0 x 10* N -'s/m. Successive iterations
are shown in Fig. 12.
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VI. Comparison of Damper Positioning with Real
Eigensensitivity, Complex Eigensensitivity, and
“Random Intelligent”” Damper Positioning

In this last section, a comparative analysis of different damper
positioning methods is performed. Two of them are the methods
described in this paper: the real eigensensitivity method and complex
eigensensitivity method. The third one is a random intelligent
method, that is, a method in which the location of the dampers is
chosen via engineering reasoning, attending to the shape of modes to
be attenuated. It also would be valuable to take into account a
comparison with a full search method but, from the computational
point of view, it is not a viable option for complex structures, and the
results obtained with a simpler structure would not be representative.
Once the fourth option has been ruled out for the three first cases, the
horizontal displacements of nodes 7, 13, and 19, placed at different
heights along the structure, will be measured for a certain length of
time. The comparison is performed for the following cases:

1) Free vibrations: The starting point is the static deformation
caused from the application of a horizontal force of 100 kN to the
upper node of the structure in the direction given by nodes 1-2 (from
1 toward 2). This direction has been chosen to excite bending modes.
Then, the structure is allowed to vibrate freely.
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Fig. 15 Free vibrations with four dampers located via complex eigensensitivity (1, 3, 5, 6).
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Fig. 16 Forced vibrations with four dampers located via “random intuitive’’ method (1, 2, 3, 4).
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Fig. 18 Forced vibrations with four dampers located via complex eigensensitivity (1, 3, 5, 6).

2) Forced vibrations: The system is excited with a harmonic force
at the upper node and in the same direction as in case 1. The
amplitude is SOEO3 N, and it has two harmonic terms; one has an
excitation frequency of 12.5 Hz and the other 60 Hz, that is,
F(f) = 50E03[sin(2712.5 x t) + sin(2760 X 1)]. These harmonic
terms should excite more or less the lowest four natural frequencies,
as their values for the nondamped structure are f1 = 12.523 Hz,
f2=12.524 Hz, f3 = 56.96 Hz, f4 = 67.31 Hz.

The value of the damping coefficients is 1.0 x 10* N - s/m. The
distributions of dampers to be chosen must take into account the four
lowest modes. In Figs. 13—18, the effectiveness of each method can
be appreciated. In both types of vibrations, free and forced, a sensible
difference can be observed among the results. The methods
developed here have a better performance than an intuitive election
of the damper location. In addition, one can observe that, between the
two methods developed here, the complex eigensensitivity method is
more effective than the real eigensensitivity method.

VIL

In this paper, two procedures have been developed to calculate the
optimal damper distributions in variable geometry trusses. These
procedures are based on eigensensitivity, that is, the calculation of
the derivatives of natural eigenfrequencies and eigenmodes with
respect to dynamic parameters of the VGT. The derivation with
respect to the stiffness parameters leads to the first of these methods,
called the real eigensensitivity method; the derivation performed
with respect to the damping parameters gives rise to the second one,

Conclusions

called the complex eigensensitivity method. In the first method, the
derivatives of frequencies are performed for the nondamped
structure; therefore, all the dampers are located in one go. The second
method requires the calculation of the derivatives of the complex
eigenvalues of the structure once damped. Thus, progressive
damping placement is done iteratively until a maximum number of
dampers are placed; to incorporate a new damper (or damper subset),
the eigensensitivity for the damped structure is assessed with the
damper distribution of the last iteration. Results have been compared
in terms of the dynamic response, and the effectiveness of the two
proposed methods has been proven. The complex eigensensitivity
method has been shown to be particularly effective in the examples
presented in this paper. However, there is challenging work to be
done in the future to refine the method of optimum damper location;
the authors are now dealing with the hybridization of this
methodology with genetic algorithms.
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